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We establish a connection among(i) the so-called Wehrl entropy,(ii ) Fisher’s information measureIb, and
(iii ) the canonical ensemble entropy for the one-dimensional quantum harmonic oscillator(HO). We show that
the contribution of the excited HO spectrum to the mean thermal energy is given byIb, while the pertinent
canonical partition function is essentially given by another Fisher measure: the so-called shift invariant one.
Our findings should be of interest in view of the fact that it has been shown that the Legendre transform
structure of thermodynamics can be replicated without any change if one replaces the Boltzmann-Gibbs-
Shannon entropy by Fisher’s information measure[B. R. Frieden, A. Plastino, A. R. Plastino, and H. Soffer,
Phys. Rev. E60, 48 (1999)]. Fisher-related uncertainty relations are also advanced, together with a Fisher
version of thermodynamics’ third law.
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I. INTRODUCTION

We will here explore some features of an information-
theoretic uncertainty measure, the Wehrl entropy[1] IW. As
shown by Lieb [2], IWù1, and this bound represents a
strengthened version of the uncertainty principle. In the case
of a harmonic oscillator in a thermal state,IW coincides with
the logarithmic information measure of Shannon’s in the
high-temperature regime. However, it does not vanish at zero
temperature, thus supplying a nontrivial measure of uncer-
tainty due to both thermal and quantum fluctuations[3]. It
will be shown here that intriguing connections linkIW to
Fisher’s information measureI. As far as possible, we will
use the notation of Anderson and Halliwell[3].

The present endeavor is motivated by the fact that much
interesting work has recently been devoted to the physical
applications of Fisher’s information measure(FIM) (see, for
instance, Refs.[4–8]). Frieden and Soffer[4] have shown
that Fisher’s information measure provides one with a pow-
erful variational principle—the extreme physical information
one, which yields most of the canonical Lagrangians of the-
oretical physics[4,5]. Additionally, I has been shown to pro-
vide an interesting characterization of the “arrow of time,”
alternative to the one associated with Boltzmann’s entropy
[9,10]. Thus, unraveling the multiple FIM facets and their
links to physics should be of general interest. The Legendre
transform structure of thermodynamics can be replicated as
well, without any change, if one replaces the Boltzmann-
Gibbs-Shannon entropySby Fisher’s information measureI.
In particular,(i) I possesses the all important concavity prop-
erty [7], and (ii ) use of the Fisher’s measure allows for the
development of a thermodynamics that seems to be able to
treat equilibrium and nonequilibrium situations in a manner
entirely similar to the conventional one[7]. Here, the focus
of our attention will be, following Ref.[3], the thermal de-
scription of harmonic oscillator(HO).

For the convenience of the reader, in Sec. II we review
some fundamental aspects of the HO canonical-ensemble de-
scription from a coherent states’ viewpoint[3]. We also dis-
cuss some ideas related to Fisher’s information measure, the

protagonist of the present effort, in Sec. III. In Sec. IV we
explore its properties with regards to temperature’s estima-
tion while, in Sec. V, we establish some results concerning
uncertainty relations. Finally, we draw some conclusions in
Sec. VI.

II. BACKGROUND NOTIONS

In Ref. [3] the authors discuss quantum-mechanical
phase-space distributions expressed in terms of the cel-
ebrated coherent statesuzl of the harmonic oscillator, eigen-
states of the annihilation operatorâ [11,12]:

Ĥo = "vfâ†â + 1/2g, â = is2"vmd−1/2p̂ + smv/2"d1/2x̂;

2z= sx/sx + ip/spd,

z= smv/2"d1/2x + is2"vmd−1/2p,;x8 + ip8 with x8

= x/2sx, p8 = p/2sp;

sx = s"/2mvd1/2, sp = s"mv/2d1/2, sxsp = "/2. s1d

Variancess are evaluated for the HO ground state. Coherent
states span Hilbert’s space, constitute an overcomplete basis,
and obey the completeness rule(use “natural variables”
x8 ,y8) [11]:

E d2z

p
uzlkzu =E dx dp

2p"
ux,plkx,pu = 1,

d2z= d Reszdd Imszd=
dxdp

2"
; dx8dp8. s2d

Variancess are evaluated for the HO ground state. The We-
hrl entropy[1] is defined as
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IW = −E dp dx

2p"
msx,pdln msx,pd, s3d

wheremsx,pd=kzur̂uzl is the “classical” distribution function
associated to the density matrixr̂ of the system. The function
msx,pd is normalized in the fashionesdp dx/2p"dmsx,pd
;esdx8 dp8 /pdmsx8 ,p8d=1, and is often referred to as the
Husimi distribution[13]. It is of particular interest to discuss
the equilibrium case as represented by Gibbs’ canonical dis-
tribution, where the “thermal” density matrix is given byr̂

=Z−1e−bĤ. Z=Trse−bĤd is the partition function andb
=1/kT, T being the temperature andk the Boltzmann con-
stant, to be set equal to unity hereafter. Specializing things
for the HO, with eigenstatesunl associated to the eigenener-

gies En="vsn+ 1
2

d, one has kzur̂uzl=s1/Zdon e−bĤukzunlu2

with ukzunlu2=suzu2n/n!de−uzu2, so that the distributionm reads
[3]

msx,pd = kzur̂uzl = s1 − e−b"vde−s1−e−b"vduzu2, s4d

and the Wehrl information(3), after integration over all
phase space, turns out to be

IW = 1 − lns1 − e−b"vd. s5d

Note thatx8, y8 in Eq. (1) have been chosen so as to obtain
the following result. First define(1) euzu

2 sb ,vd;euzu
2 , (2) J2

=s1/pdedx8dp8 msx8 ,p8duzu2, and (3) J
=s1/pdedx8dp8 msx8 ,p8duzu. Then

euzu
2 = J2 − J2 = kuzu2lm − kuzulm

2 =E dx8dp8

p
msx8,p8dsx82 + p82d

= s1 − e−b"vd−1. s6d

We write down now, for future reference, well-known HO
expressions for the entropyS, the mean energyU, the spe-
cific heatCV, andZ, respectively.[14,15].

S= b
"v

eb"v − 1
− lnh1 − e−b"vj,

U = "vF1

2
+

1

eb"v − 1
G ,

CV = − b2s] U/] bdV = F "vb

eb"v − 1
G2

eb"v,

ln Z = − b
"v

2
− lnh1 − e−b "vj. s7d

III. FISHER’S INFORMATION MEASURE

One important information measure is that advanced by
Fisher in the 1920s(a detailed study can be found in Refs.
[4,5]). Let us consider a system that is specified by a physical
parameteru, while x is a stochastic variablesxPReNd and
fusxd the probability density forx, which depends on the

parameteru. An observer makes a measurement ofx and has
to best inferu from this measurement, calling the resulting

estimateũ= ũsxd. One wonders how wellu can be deter-
mined. Estimation theory[16] asserts that the best possible

estimatorũsxd, after a very large number ofx samples is
examined, suffers a mean-square errore2 from u that obeys a
relationship involving Fisher’sI, namely Ie2=1, where the
Fisher’s information measureI is of the form

Isud =E dx fusxdH ] ln fusxd
] u

J2

. s8d

This “best” estimator is called theefficientestimator. Any
other estimator must have a larger mean-square error. The
only proviso to the above result is that all estimators be

unbiased, i.e., satisfykũsxdl=u. Thus, Fisher’s information
measure has a lower bound, in the sense that, no matter what
parameter of the system we choose to measure,I has to be
larger than or equal to the inverse of the mean-square error
associated with the concomitant experiment. This result,
Ie2ù1, is referred to as the Cramer–Rao(CR) bound[5]. A
particular I case is of great importance: that of translation
families [5,6], i.e., distribution functions(DF) whose form
does not change underu displacements. These DF are shift
invariant (in the manner of Mach, no absolute origin foru),
and for them Fisher’s information measure adopts a some-
what simpler appearance[5]:

Isshift invariantd =E dx fsxdH ] ln fsxd
] x

J2

. s9d

Fisher’s measure is additive[5]; if x and p are indepen-
dent variables, Isx+pd= Isxd+ Ispd. Note that for u;t
=sx,pd (a point in phase space), we face a shift-invariance
situation. Since in definingz in terms of the variablesx and
p, these are scaled by their respective variances(cf. above
the definition ofkzl), the Fisher measure associated to the
probability distributionmsx,pd;mstd will be of the form[6]

It =E dp dx

2p"
msx,pdA, s10d

with

A = sx
2F ] ln msx,pd

] x
G2

+ sp
2F ] ln msx,pd

] p
G2

. s11d

Given them expression(4), It becomes

It = 1 −e−b"v, s12d

which, in view of Eq.(6) immediately yields

Iteuzu
2 sb,vd = 1sCR bound reachedd. s13d

We realize at this point that the Fisher measure built up with
Husimi distributions is to be best employed to estimate
“phase-space position”uzu. Further, efficient estimation is
possible for all temperatures, a rather significant result.
Comparison with Eq.(5) allows one now to write
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IW = 1 − lnfItg ⇒ IW + lnfItg = 1. s14d

Since bothIW andIt are positive-definite quantities, Eq.(14)
tells us thatthey are complementary informational quanti-
ties, what one of them gains, the other loses. Following
Anderson and Halliwell[3], let us analyze now the high and
low temperature limits. When the temperature tends to zero
sb→`d, It<1, its maximum possible value, since we know
that the ground state will be the only one to be populated. If,
on the other hand, the temperature tends to infinitysb→0d,
then It<b"v and tends to zero because we know before-
hand that, in the limit, all energy levels will be populated in
uniform fashion. The uniform distribution is that of maxi-
mum ignorance[17]. The range ofIt is f0,1g, that of IW is
f1,`g. ReplacingIt into Eq. (7) we note that

It =
e−s1/2db"v

Z
, s15d

so that it coincides with the canonical-ensemble probability
for finding the system in its ground state.

IV. FISHER, INVERSE TEMPERATURE, AND
THERMODYNAMICS’ THIRD LAW

Consider now the general definition(8) of Fisher’s infor-
mation measure in terms of the DFmsx,pd:

Ib =E dp dx

2p"
msx,pdS ] ln msx,pd

] b
D2

, s16d

with b;u being the parameter to be estimated. Since

] ln msx,pd
] b

=
"v

eb"v − 1
f1 − s1 − e−b"vduzu2g, s17d

one readily ascertains that(i) the m mean value of Eq.(17)
vanishes, and(ii )

Ib = F "v

eb"v − 1
G2

sT = f0,`g → Ib = f0,`gd, s18d

which, in view of Eq.(7), entails

Ib =
e−b"v

b2 CV. s19d

Reflection upon theIb range(18) might lead one to conclude
that it constitutes aFisher manifestation of thermodynamics’
third law. Not only Shannon’s measure, but also Fisher’s(for
the HO, at least) vanishes at zero temperature. Replacing
now Eqs.(12) and (18) into the entropy expression[cf. Eq.
(7)] we immediately arrive at the relation

S= bÎIb − ln It. s20d

The HO entropy can be expressed as the sum of two terms:
one associated with the Fisher informationIb and the other
with the Fisher information for translation familiesIt corre-
sponding to the phase-space variablessp,xd. Using Eq.(7)
we also have

ln It = − b
"v

2
− ln Z = − fbEgs+ ln Zg, s21d

with Egs denoting the ground state energy. Thus,

S= bF"v

2
+ ÎIbG + ln Z, s22d

which is to be compared to the well-known canonical-
ensemble general expression connectingS and the mean en-
ergy U [14],

S= ln Z + bU, s23d

we see thatIb is related to the excited spectrum contribution
to U while It is to be linked to the partition function. We will
look now for a new connection between Fisher’s measuresIt

and Ib. From Eq.(18) it is possible to rewriteIb in the form

Ib ; S"v e−b"v

1 − e−b"vD2

, s24d

and therefore

It
ÎIb = "ve−b"v = −

] fe−b"vg
] b

, s25d

i.e, the product on the left-hand side is theb derivative of the
Boltzmann factor(constant energywise) at the inverse tem-
peratureb. In other words,It

ÎIb measures theb gradient of
the Boltzmann factor.

V. UNCERTAINTIES

We focus attention now on the actual phase-space vari-
ablesx,p (not on x8 ,p8), and start with the obvious results
kxlm=kplm=0. We immediately find

sDmxd2 = kx2lm =E dp dx

2p"
x2msx,pd =

2 sx
2

1 − e−b"v . s26d

In a similar vein

sDmpd2 = kp2lm =
2 sp

2

1 − e−b"v , s27d

which entails

Dm ; Dmx Dmp =
"

1 − e−b"v =
"

It

⇒ ItDm = ". s28d

We reconfirm thus the already mentioned fact that phase-
space “location” is possible, with Husimi distributions(HP-
DFs) only up to". This is to be compared to the uncertainties
evaluated in a purely quantal fashion without using HPDFs.
This is made by recourse to the virial theorem[14], which
entails both(i) U=mv2kx2l and (ii ) U=kp2l /m [cf. Eq. (7)].
From these we easily deduce

kx2l = sx
2eb"v + 1

eb"v − 1
⇒ kx2lm =

2kx2l
1 + e−b"v s29d

and
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kp2l = sp
2eb"v + 1

eb"v − 1
⇒ kp2lm =

2kp2l
1 + e−b"v . s30d

Consequently,

Dx Dp =
"

2

eb"v + 1

eb"v − 1
⇒ Dm =

2 Dx Dp

1 + e−b"v . s31d

As b→`, Dm is twice the minimum quantum value for
DxDp, and Dm→", the “minimal” phase-space cell. The
quantum and semiclassical results do coincide at a very high
temperature, though. Finally, with the help of Refs.[24,25],
one readily can recast Heisenberg’s uncertainty relation as a
function of both frequency and temperature in the fashion

Fsb,vd = DxDp =
"

2It

s1 + e−b"vd =
1

2
F "

It

+
ÎIb

v
G , s32d

so that, forT varying in f0,`g, the range of possibleDxDp
values isf" /2 ,`g. Equation(32) is a “Heisenberg-Fisher”
thermal uncertainty(TU) relation(for a discussion of the TU
concept, see, for instance, Refs.[8,18,19]. Fsb ,vd grows
with Ib and diminishes withIt. Note that,for fixed uncer-
tainty Fsb ,vd=const,It andIb play “parallel” roles: improv-
ing temperature-estimation performance(in the sense thatIb

grows) also enhances that of phase-space location
(It has to grow as well), and vice versa.

VI. CONCLUSIONS

We have explored in this work connections between
canonical-ensemble quantities and two FIMs, associated to
the estimation of, respectively,(i) phase-space locationsItd
and temperaturesIbd. Our most important result is, perhaps,
to show that there exists a “Fisher-associated” third law of
thermodynamics (at least for the HO). From a pure
information-theoretic viewpoint, we have, in addition, ad-
vanced several results, namely,(1) a connection between
Wehrl’s entropy andIt [cf. Eq. (14)], (2) an interpretation of
It as the HO’s ground state occupation probability[cf. Eq.
(15)], (3) an interpretation ofIb proportional to the HO’s
specific heat[cf. Eq. (19)], (4) the possibility of expressing
the HO’s entropy as a sum of two terms, one for each of the
above FIM realizations[cf. Eq. (20)], (5) a new form of
Heisenberg’s uncertainty relations in Fisher terms[cf. Eq.
(32)], (6) efficient uzu estimation can be achieved withIt at
all temperatures, as the minimum Cramer-Rao value is al-
ways reached[cf. Eq. (13)].

These results are, of course, restricted to the harmonic
oscillator. However, this is such an important system that HO
insights usually have a wide impact, as the HO constitutes
much more than a mere example. Nowadays it is of particu-
lar interest for the dynamics of bosonic or fermionic atoms
contained in magnetic traps[20–22] as well as for any sys-
tem that exhibits an equidistant level spacing in the vicinity
of the ground state, like nuclei or Luttinger liquids.
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